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Resource needs of cloud storage applications 
span multiple aspects
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Cloud applications are diverse!
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In terms of their capacity needs for both volatile reads and persistent writes
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Cloud applications are diverse!

4

In terms of volume of read and write accesses

Search-Serve

Across different applications Temporally within same applications

How to effectively provision memory and storage resources for 
diverse cloud storage applications?



DRAM and SSD are memory and storage resources
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They are rigid in their performance characteristics
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or Storage
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Can emerging memories help meet diverse resource 
needs for cloud storage apps across several dimensions?
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Can we exploit these emerging memory technologies to overcome 
drawbacks of existing resources?



What are the design choices to integrate emerging 
memory technologies in cloud servers?
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Persistent memory 
programming

Intrusive code changes 
to applications!

Benefit volatile and 
persistent accesses

NVM based file 
systems

High NVM provisioning 
cost for entire storage 
needs!
Intrusive code changes to 
OS and FS!

No changes to applications

Benefits reads or writes
and not both!

Low cost and transparent

Transparent cache
(memory or 

storage)



Emerging memory technologies are polymorphic
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They can function as both memory and storage!

Can we exploit functional polymorphism knob?



Functional polymorphism can benefit applications with 
competing volatile and persistent flows
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What if the working set exceeds physical memory/write-cache capacity?



Impact of insufficient physical capacity + fixed 
resource characteristics on application performance
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Representational polymorphism knob to tune 
latency and capacity
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Representational polymorphism can benefit 
applications
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Our goal: Effectively serve diverse cloud applications 
using polymorphic emerging memory based cache 
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NVM
NVM

PolyEMT: Polymorphic Emerging Memory 
Technology based cache
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Cloud applications are diverse: One partition size does not fit all!

NVM can be
Battery-backed DRAM,
3D-Xpoint, etc. 



PolyEMT: Polymorphic Emerging Memory 
Technology based cache
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We need to navigate performance trade-off across capacity, latency, and 
persistence dimensions!

NVM can be
Battery-backed DRAM,
3D-Xpoint, etc. 



Key idea of PolyEMT cache
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• Address the most significant bottleneck first using the 
emerging memory based cache

• Then gradually morph its characteristics to further 
improve performance

What is the most significant bottleneck for a generic application 
with mixes of reads and writes ?
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Persistent writes (file writes, flushes, msyncs) incurs 
high latency in existing systems
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Persistent tier is 
much slower

And, SSDs are asymmetric in 
their read/write latency
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As write-cache and 
memory extension

EMT entirely in Write-Cache is inefficient usage for 
read accesses as they are byte addressible
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How to apportion 
NVM capacity
between memory and
Storage functions?

Resource is 
byte addressable!



Tuning write-cache capacity in the presence of 
competing read and write flows
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Tuning write-cache capacity in the presence of 
competing read and write flows

20

% EMT in Memory

Volatile Latency

1000 5025 75
1

0Pe
rs

is
te

nt
 W

rit
e

La
te

nc
y

% EMT in Storage
100 0

1

5075 25
0



Balance the overall impact of read and write accesses
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Incrementally repurpose Write-Cache blocks as memory pages to balance 
read/write performance.



When the physical capacity is insufficient, exploit 
representational polymorphism
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When the physical capacity is insufficient, exploit 
representational polymorphism
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PolyEMT optimization steps at a glance
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4. LRU based 
capacity 

management

1. EMT as persistent Write-Back Cache 

2. Exploit functional polymorphism 

3. Exploit representational
polymorphism 

On scheduling a 
new application

On dynamic phase 
changes within an 
application



PolyEMT prototype
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• PolyEMT library and runtime
• mmap(): native load/store access 
• msync(): persist dirty data to NVM write cache

persist data to SSD in background

• More implementation details in the paper



Evaluation Setup
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• Azure VM 
• DRAM (26GB)
• Battery Backed –DRAM (6GB) 
• SSD
• CPU based compression

• Redis Key-Value store with persistence capability
• Data set size: 

• 38GB much higher than DRAM+BB-DRAM capacity

• YCSB benchmarks



Transparent integration policies under evaluation

• Dram-Extension
• Write-Cache 
• Write-Cache + Functional polymorphism
• Write-Cache + Functional polymorphism + Representational polymorphism



Performance benefits of PolyEMT on throughput
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Performance benefits of PolyEMT on tail latency
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PolyEMT achieves performance by apportioning 
polymorphic resource across multiple dimensions
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PolyEMT benefits diverse cloud applications via careful apportioning of 
polymorphic cache across three dimensions!



Diverse storage applications + Polymorphic EMT cache = 
High performance

To conclude,
• Explore emerging memory technologies to augment SSD performance

• For diverse cloud applications
• In a cost efficient and transparent way

• Our contributions:
• Functional and representational polymorphism knobs of emerging memories
• EMT design as a cache for SSD
• Transparent mechanism to integrate this cache
• Policy to morph this cache across to improve performance

• Software defined memory and storage resource provisioning to extract better 
performance per cost
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