
Getting More Performance with
Polymorphism from Emerging
Memory Technologies

Iyswarya Narayanan, Aishwarya Ganesan, Anirudh Badam, Sriram Govindan,
Bikash Sharma, Anand Sivasubramaniam

Resource needs of cloud storage applications
span multiple aspects

2Latency

PD
F

Trimmed tail

High performance

High Capacity

SSD
SSD

Volatile and
persistent accesses

Cloud applications are diverse!

3

In terms of their capacity needs for both volatile reads and persistent writes

0

0.2

0.4

0.6

0.8

Cloud Storage Map Reduce Search-Index Search-ServeU
ni

qu
e

pa
ge

s a
cc

es
se

d
w

ith
in

 a
 ti

m
e

w
in

do
w

Reads Writes

Write intensive Read intensive Read and
write intensive

Cloud applications are diverse!

4

In terms of volume of read and write accesses

Search-Serve

Across different applications Temporally within same applications

How to effectively provision memory and storage resources for
diverse cloud storage applications?

DRAM and SSD are memory and storage resources

5

Volatile Persistent

Latency
Cost
Capacity

Low latency
Low capacity

High latency
High capacity

They are rigid in their performance characteristics

6

Volatile PersistentIn Function: Memory
or Storage

In Latency: fast DRAM
vs. slow SSD

In Capacity: Based on
server SKU

Latency
Cost
Capacity

Low latency
Low capacity

High latency
High capacity

Can emerging memories help meet diverse resource
needs for cloud storage apps across several dimensions?

7

Non-volatile
Lower latencies w.r.t SSD

+ -

+ -

Battery Backed DRAM

3D XPoint

Compressed

Volatile
Low capacity
Low latency

Persistent
High capacity
High latency

Larger and flexible: capacity and latency

Latency
Cost
Capacity

Can we exploit these emerging memory technologies to overcome
drawbacks of existing resources?

What are the design choices to integrate emerging
memory technologies in cloud servers?

8

Persistent memory
programming

Intrusive code changes
to applications!

Benefit volatile and
persistent accesses

NVM based file
systems

High NVM provisioning
cost for entire storage
needs!
Intrusive code changes to
OS and FS!

No changes to applications

Benefits reads or writes
and not both!

Low cost and transparent

Transparent cache
(memory or

storage)

Emerging memory technologies are polymorphic

volatile

persistent

Persistent write
cache

Volatile memory
cacheMemory

extension (direct
access via loads,

stores)

Transparent
write cache above

SSD (via
block interface)

They can function as both memory and storage!

Can we exploit functional polymorphism knob?

Functional polymorphism can benefit applications with
competing volatile and persistent flows

10

0

5

10

15

0 50 100

Ta
il

la
te

nc
y

% NVM used as write cache

Partitioning NVM between memory and storage reduces latency

MySQL TPC-C

dm-cache to use a part of NVM as write cache
Rest – additional memory accessible via load/stores

What if the working set exceeds physical memory/write-cache capacity?

Impact of insufficient physical capacity + fixed
resource characteristics on application performance

11Access Latency

Pr
ob

ab
ili

ty
Application’s working set split between two
fixed latency tiers

95th percentile

DRAM
SSD

Tail latency is determined by the slowest tier

Representational polymorphism knob to tune
latency and capacity

12Access Latency

Pr
ob

ab
ili

ty

Tail latency reduces

Application’s working set split between two
fixed latency tiers

Faster tier morphs
to hold more working set

95th percentile

DRAM
SSD

95th percentile

Representational polymorphism can benefit
applications

13

0
2
4
6
8

10
12

4096 2048 1024 512

Ac
ce

ss
 L

at
en

cy
 (u

s)

Compressed Access Granularity (bytes)

Write Access Read Access

Our goal: Effectively serve diverse cloud applications
using polymorphic emerging memory based cache

0

200

400

600

800

1000

MapReduce SearchServe

%
 In

cr
ea

se
 in

 c
ap

ac
ity Much lower

latency
compare to

SSD!

2X to 8X
increase in
effective
capacity

NVM
NVM

PolyEMT: Polymorphic Emerging Memory
Technology based cache

14

Unmodified Application

DRAM
ns

us

100 us

10 us

Memory

SSD
Storage

Memory Interface

Block Interface

Functional Polymorphism:
Memory vs. Storage ?

1

1

Cloud applications are diverse: One partition size does not fit all!

NVM can be
Battery-backed DRAM,
3D-Xpoint, etc.

PolyEMT: Polymorphic Emerging Memory
Technology based cache

15

Unmodified Application

DRAM
ns

us

100 us

10 us

Memory

SSD

Compressed

Storage

Memory Interface

Block Interface

Compressed

Functional Polymorphism:
Memory vs. Storage ?

Representational Polymorphism:
Capacity vs. Latency ?

1

2

1
NVM

NVM2
2

We need to navigate performance trade-off across capacity, latency, and
persistence dimensions!

NVM can be
Battery-backed DRAM,
3D-Xpoint, etc.

Key idea of PolyEMT cache

16

• Address the most significant bottleneck first using the
emerging memory based cache

• Then gradually morph its characteristics to further
improve performance

What is the most significant bottleneck for a generic application
with mixes of reads and writes ?

0

1

2

3

4

5

Reads Writes

La
te

nc
y

(m
s)

Avg. 95

Persistent writes (file writes, flushes, msyncs) incurs
high latency in existing systems

17

Persistent tier is
much slower

And, SSDs are asymmetric in
their read/write latency

Read
Misses

Persistent
writes

DRAM

Block File System

SSD

SSD
reads

SSD
writes

Use BB-DRAM as
Write-Cache to SSD

Read
Misses

Persistent
writes

DRAM

Block File System

SSD

BB-DRAM Write Cache
SSD

Reads
SSD

Writes

DRAM

Persistent
writes

Block File System

SSD

BB-DRAM Write Cache

SSD
Reads

SSD
Writes

BB-DRAM

Read
Misses

As write-cache and
memory extension

EMT entirely in Write-Cache is inefficient usage for
read accesses as they are byte addressible

18

As write-cache

Read
Misses

Persistent
writes

DRAM

Block File System

SSD

BB-DRAM Write Cache
SSD

Reads
SSD

Writes

How to apportion
NVM capacity
between memory and
Storage functions?

Resource is
byte addressable!

Tuning write-cache capacity in the presence of
competing read and write flows

19

Pe
rs

is
te

nt
 W

rit
e

La
te

nc
y

% BB-DRAM in Storage
100 0

1

5075 25
0

Tuning write-cache capacity in the presence of
competing read and write flows

20

% EMT in Memory

Volatile Latency

1000 5025 75
1

0Pe
rs

is
te

nt
 W

rit
e

La
te

nc
y

% EMT in Storage
100 0

1

5075 25
0

Balance the overall impact of read and write accesses

21

Ap
pl

ic
at

io
n

Pe
rf

or
m

an
ce

% EMT in Storage
100 0

% EMT in Memory

50

1000 5025 75

75 25

1

0

% EMT in Memory

Volatile Latency

1000 5025 75
1

0Pe
rs

is
te

nt
 W

rit
e

La
te

nc
y

% EMT in Storage
100 0

1

5075 25
0

Incrementally repurpose Write-Cache blocks as memory pages to balance
read/write performance.

When the physical capacity is insufficient, exploit
representational polymorphism

22

DRAM

Persistent
writes

Block File System

SSD

BB-DRAM Write Cache

SSD
Reads

SSD
Writes

BB-DRAM

Read
Misses

Functional
polymorphic cache

Functional + Representational
polymorphic cache

DRAM

Block File System

SSD

BB-DRAM Write Cache

SSD
Reads

SSD
Writes

BB-DRAM

Read
Misses

Compressed-BB-DRAM

Compressed BB-DRAM

Persistent
writes

No latency benefits by separating
memory and storage functions!

When the physical capacity is insufficient, exploit
representational polymorphism

23

DRAM

Persistent
writes

Block File System

SSD

BB-DRAM Write Cache

SSD
Reads

SSD
Writes

BB-DRAM

Read
Misses

Functional
polymorphic cache

Functional + Representational
polymorphic cache

DRAM

Block File System

SSD

BB-DRAM Write Cache

SSD
Reads

SSD
Writes

BB-DRAM

Read
Misses

Compressed-BB-DRAM

Compressed BB-DRAM

Persistent
writes

No latency benefits by separating
memory and storage functions!

DRAM

Block File System

SSD

Battery-backed DRAM

SSD
Reads

SSD
Writes

BB-DRAM
Read

Misses

Shared-Compressed
BB-DRAM

Persistent
writes

Shared compression layer reduces
compute requirements too!

Shared compressed
representation

PolyEMT optimization steps at a glance

24

4. LRU based
capacity

management

1. EMT as persistent Write-Back Cache

2. Exploit functional polymorphism

3. Exploit representational
polymorphism

On scheduling a
new application

On dynamic phase
changes within an
application

PolyEMT prototype

25

• PolyEMT library and runtime
• mmap(): native load/store access
• msync(): persist dirty data to NVM write cache

persist data to SSD in background

• More implementation details in the paper

Evaluation Setup

26

• Azure VM
• DRAM (26GB)
• Battery Backed –DRAM (6GB)
• SSD
• CPU based compression

• Redis Key-Value store with persistence capability
• Data set size:

• 38GB much higher than DRAM+BB-DRAM capacity

• YCSB benchmarks

Transparent integration policies under evaluation

• Dram-Extension
• Write-Cache
• Write-Cache + Functional polymorphism
• Write-Cache + Functional polymorphism + Representational polymorphism

Performance benefits of PolyEMT on throughput

0

2

4

6

8

a b c d e f MeanN
or

m
al

ize
d

Th
ro

ug
hp

ut

w
rt

DR
AM

-E
xt

en
si

on

Write-Cache Functional Functional+Representational

2.5X

4.55X
5X

Addressing the most significant bottleneck improves performance by 2.5X

Exploiting polymorphisms further improves performance by 70% and 90%

Performance benefits of PolyEMT on tail latency

0
0.2
0.4
0.6
0.8

1

N
or

m
al

ize
d

U
pd

at
e

La
te

nc
y

w
rt

DR
AM

-E
xt

Write-Cache Functional

0
0.2
0.4
0.6
0.8

1

N
or

m
al

ize
 R

ea
d

La
te

nc
y

w
rt

 D
RA

M
-E

xt

Functional+Representational

Functional polymorphism reduces write and read tail latency by 60% and 80%

EMT based write cache reduces write and read tail latency by 30% and 40%

Combining morphing reduces write and read tail latency by 85% and 78%

0.7 0.6
0.4

0.20.15
0.22

PolyEMT achieves performance by apportioning
polymorphic resource across multiple dimensions

0
20
40
60
80

100

F-
on

ly
F+

R

F-
on

ly
F+

R

F-
on

ly
F+

R

F-
on

ly
F+

R

F-
on

ly
F+

R

F-
on

ly
F+

R

a b c d e f

EM
T

al
lo

ct
io

n
in

 %
Persistent Compresed Volatile

PolyEMT benefits diverse cloud applications via careful apportioning of
polymorphic cache across three dimensions!

Diverse storage applications + Polymorphic EMT cache =
High performance

To conclude,
• Explore emerging memory technologies to augment SSD performance

• For diverse cloud applications
• In a cost efficient and transparent way

• Our contributions:
• Functional and representational polymorphism knobs of emerging memories
• EMT design as a cache for SSD
• Transparent mechanism to integrate this cache
• Policy to morph this cache across to improve performance

• Software defined memory and storage resource provisioning to extract better
performance per cost

	Getting More Performance with Polymorphism from Emerging Memory Technologies
	Resource needs of cloud storage applications �span multiple aspects
	Cloud applications are diverse!
	Cloud applications are diverse!
	DRAM and SSD are memory and storage resources
	They are rigid in their performance characteristics
	Can emerging memories help meet diverse resource needs for cloud storage apps across several dimensions?
	What are the design choices to integrate emerging memory technologies in cloud servers?
	Emerging memory technologies are polymorphic
	Functional polymorphism can benefit applications with competing volatile and persistent flows
	Impact of insufficient physical capacity + fixed resource characteristics on application performance
	Representational polymorphism knob to tune latency and capacity
	Representational polymorphism can benefit applications
	PolyEMT: Polymorphic Emerging Memory Technology based cache
	PolyEMT: Polymorphic Emerging Memory Technology based cache
	Key idea of PolyEMT cache
	Persistent writes (file writes, flushes, msyncs) incurs high latency in existing systems
	EMT entirely in Write-Cache is inefficient usage for read accesses as they are byte addressible
	Tuning write-cache capacity in the presence of competing read and write flows
	Tuning write-cache capacity in the presence of competing read and write flows
	Balance the overall impact of read and write accesses
	When the physical capacity is insufficient, exploit representational polymorphism
	When the physical capacity is insufficient, exploit representational polymorphism
	PolyEMT optimization steps at a glance
	PolyEMT prototype
	Evaluation Setup
	Transparent integration policies under evaluation
	Performance benefits of PolyEMT on throughput
	Performance benefits of PolyEMT on tail latency
	PolyEMT achieves performance by apportioning polymorphic resource across multiple dimensions
	Diverse storage applications + Polymorphic EMT cache = High performance

